• 欢迎访问广东专插本网!本站为【传爱专升本】旗下门户网站,为广大考生提供免费专升本政策与资讯,具体专升本考试信息以广东省教育考试院http://eea.gd.gov.cn/为准。
  • 登录 | 注册
    服务时间
    9:00-24:00
    报考解答
    还在为报考流程
    报名条件发愁?
    微信扫码添加
    发送【地区】+【年级】+【专业】

    (传爱咨考专升本老师为你解答)

    学习交流
    扫码加入考生交流群
    真题福利
    扫码回复【真题】领取
    在线做题
    扫码即可开始刷题
    商务合作
    联系我们
    020-85163352
    客服

    关注公众号免费领真题

    随时获取升本资讯
    随时获取升本资讯
    关闭
    广东专插本 >试题题库 > 高等数学 > 2020广东专插本高等数学:函数与极限定理(一)
    一站式专升本服务平台,免费咨询让你升学无忧
    专升本老师
    专升本网资深指导老师
    免费试听
    资料领取
    咨询老师

    2020广东专插本高等数学:函数与极限定理(一)

    2020-06-28 16:58:37    来源:广东专插本    点击:
      函数与极限

      1、函数的有界性在定义域内有f(x)≥K1则函数f(x)在定义域上有下界,K1为下界;如果有f(x)≤K2,则有上界,K2称为上界。函数f(x)在定义域内有界的充分必要条件是在定义域内既有上界又有下界。

      2、数列的极限定理(极限的唯一性)数列{xn}不能同时收敛于两个不同的极限。

      定理(收敛数列的有界性)如果数列{xn}收敛,那么数列{xn}一定有界。

      如果数列{xn}无界,那么数列{xn}一定发散;但如果数列{xn}有界,却不能断定数列{xn}一定收敛,例如数列1,-1,1,-1,(-1)n+1…该数列有界但是发散,所以数列有界是数列收敛的必要条件而不是充分条件。

      定理(收敛数列与其子数列的关系)如果数列{xn}收敛于a,那么它的任一子数列也收敛于a.如果数列{xn}有两个子数列收敛于不同的极限,那么数列{xn}是发散的,如数列1,-1,1,-1,(-1)n+1…中子数列{x2k-1}收敛于1,{xnk}收敛于-1,{xn}却是发散的;同时一个发散的数列的子数列也有可能是收敛的。

      3、函数的极限函数极限的定义

      定理(极限的局部保号性)如果lim(x→x0)时f(x)=A,而且A>0(或A0(或f(x)>0),反之也成立。

      函数f(x)当x→x0时极限存在的充分必要条件是左极限右极限各自存在并且相等,即f(x0-0)=f(x0+0),若不相等则limf(x)不存在。

      一般的说,如果lim(x→∞)f(x)=c,则直线y=c是函数y=f(x)的图形水平渐近线。如果lim(x→x0)f(x)=∞,则直线x=x0是函数y=f(x)图形的铅直渐近线。

      4、极限运算法则定理:有限个无穷小之和也是无穷小;有界函数与无穷小的乘积是无穷小;常数与无穷小的乘积是无穷小;有限个无穷小的乘积也是无穷小;定理如果F1(x)≥F2(x),而limF1(x)=a,limF2(x)=b,那么a≥b.

      5、极限存在准则:两个重要极限lim(x→0)(sinx/x)=1;lim(x→∞)(1+1/x)x=1.夹逼准则如果数列{xn}、{yn}、{zn}满足下列条件:yn≤xn≤zn且limyn=a,limzn=a,那么limxn=a,对于函数该准则也成立。

      单调有界数列必有极限。

    展开全文
    —— 没找你想要的专升本资讯?预约免费咨询 ——
    你的姓名
    *联系方式
    就读年级
    就读专业
    立即预约
    广东专插本尾部图片
    广东专插本声明

    (一)由于考试政策等各方面情况的不断调整与变化,本网站所提供的考试信息仅供参考,请以权威部门公布的正式信息为准。

    (二)本网站在文章内容来源出处标注为其他平台的稿件均为转载稿,免费转载出于非商业性学习目的,版权归原作者所有。如您对内容、版权等问题存在异议请于我们联系,我们会及时处理。


    文章来源于网络,如有侵权,请联系删除

    本文地址:http://www.lykjzc.cn/show-594-2744-1.html

    点击继续阅读>>

    扫码登录

    扫码关注“广东专插本”微信公众号

    即可查看余下内容

    二维码以过期,请重新刷新

    2024年广东专插本便捷服务

    · 温馨提示:由于专升本考试机会一年
    仅此一次,建议广大在校生提前备考。

    广东专插本 免费资料

    历年真题

    考试大纲

    备考资料

    核心考点

    报考流程

    真题合集

    一键领取全部资料
    专升本考生服务

    添加我们企业微信

    回复关键词,了解更多专升本咨询

    可为您第一时间推送专升本相关资讯